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MEMBRANE AND BENDING STRESSES IN SHALLOW
SPHERICAL SHELLS*

F.Y. M. WaN

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract—The exact solutions of the stress and displacement boundary value problem for a shallow spherical
thin elastic shell of constant thickness subject to self-equilibrating edge loads are obtained. The asymptotic
behavior of these exact solutions delineates the dependence of the interior and edge zone stress state on the applied
loads. Relations between these results and previous results obtained by a direct asymptotic analysis of these
boundary value problems are established.

1. INTRODUCTION

THE nature of the interior stress state of a thin elastic shell under external loads has received
considerable attention in recent years | 2-5). The interior of the shell may be in a membrane
state, an inextensional bending state or a mixed state of stress depending on the applied
loads. The present work offers a different perspective to this dependence. We consider a
complete shallow spherical-cap without surface loads. The edge of the shell is subjected to
self-equilibrating loads which vary sinusoidally in the circumferential direction. We solve
the boundary value problem exactly and study the asymptotic behavior of the exact solu-
tion in order to delineate the dependence of the interior and edge zone stress state on the
applied edge loads. In this way we establish relations between results obtained in the earlier
works by a direct asymptotic analysis of the boundary value problem and the asymptotic
behavior of the exact solution to the same problem which is obtained herein.

2. FORMULATION OF PROBLEM

The system of differential equations governing the small deformations of an isotropic,
shallow spherical shell with constant wall thickness and without surface loads [3] may be
written in the form

DV2V2w—R™'W2F = 0, AVV2F+ R 'WV*w =0 2.1
where V()= ( ), +tr Y ),+r72( )¢ and where

w = the normal component of the middle surface displacement,
F = a stress function representing the direct stress resultants,
R = the radius of the spherical middle surface,
* This paper is based in part on a portion of a S.M. Thesis accepted by the Massachusetts Institute of Tech-
nology in May, 1963 {1]. The author is grateful to his thesis adviser, Professor Eric Reissner, for suggesting the

problem and for his guidance. Preparation of the Thesis was supported by MIT Lincoln Laboratory. Preparation
of this paper was supported by the Office of Naval Research.
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r, 8 = polar coordinates in the plane tangent to the apex of the shell,
D = Eh*/12(1—v?), A = 1/Eh,
v = Poisson’s ratio.
Some degree of nonhomogeneity is included in the above formulation by allowing an
independent choice of bending and stretching moduli of elasticity. For a completely
homogeneous shell, E, = E; = E, where E is Young’s modulus.
The relevant stress resultants and couples are given in terms of F and w by

N,=r_1F,,+r“2F’,,0, No=F,. N, = —(ralF,‘,)’,,

Q, = —D(V’w),,  Qp= —Dr }(Vw),,

M, = —D[w,,+v(r 'w,+r " *w )], (2.2)
My = —Dlyw +r ' 'w +r ?w g,
M, = —D(l—v)(r“w,‘,),r, R, = Qr+r—1Mr0.0

The general solution to (2.1) has been obtained in [3]. For our purpose, we consider the
solution contribution which leads to finite stresses and displacements at the apex, in the
form

_{GZB" b Cober,(d Db'A} 0
~ba-v” +ﬁ[ ber(3p)+ D,bei,(Ap))  cos n .

— 2 n
F —{a A, p"— \/A [C,bei,(Ap)— D,,ber,,(/lp)]}cos no

where
r a

= -, ,{ = —
P=a J(DAR?)

and where A4,, B,, C,, D, are constants of integration to be determined by the boundary
conditions at r = a. Since the shell is complete in the circumferential direction, we take n
to be a non-negative integer.

From (2.3) and (2.2) follows

(2.4)

N, = - {n(n— DA " 2+ = pr \/ i [Cofodip)t D f,.,(ip)]}cos n
/{2
NO = {n(n_ 1)Anp"-2 _m[cnfOC(lp)+anﬂd(lp)]}cos nb

Nro = {n(n I)Anp" 2+ nfsc('lp)—'l"ansd(A‘p)]}Sln n0

2(\/A) 5
0, = R(\/A){C Lbei(Ap)— D,ber,(ip)} cos nf
A
Qo = aR(\/A)( ){C bei(Ap)— D ber,(Ap)} sin nd

M, = { —n(n—1)B,p" " 2+ [Cngrc(/lp)+D,.g,,,(,1p)]} cos né

1
R(/4)
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1
M, = {n(n —1)B,p" 2+ M[Cng&(lp) + D,gq4l4p)] } cos n

1
R(J/A)

M, = { n(n—1)B,p" "%+ [C,8s{Ap)+ D, g(4p)] }sin n®  (2.5cont’d)

Rr = é{nz(n - I)B,“O" -3 + [Cngnc(‘lao) + Dngud(xp}]} cos nf

A
R(JA)
where

foelx) = x 7 [beiy(x)—n?x " bei(x)],  fdx) = —x" ber)(x)—n*x"'ber,(x)]
Sodx) = ber(x)— x~ [beiy(x)—n?x " ‘bei,(x))

Sodx) = bei(x)+x [bery(x)—n*x " 'her,(x)]

fudx) = —nx"Ybeiy(x)—x"tbei(x)],  filx) = nx"[bery(x)—x" 'her,(x)]
g,dx) = bei (x)+ (1 —v)x~ [ber,(x)—n*x " 'ber,(x)]

2,4(x) = —ber (x)+{1—v)x~ [bei,(x)—n*x " 'bei (x)]

goc(X) = vbei (x)— (1 —v)x ™ [ber;(x)—n’x " 'ber,(x)]

Zoa(x) = —vber(x)— (1 —v)x ™ [bei,(x)—n’x~ ' bei,(x)]

2s(x) = (1 = v)nx " [ ber,(x)— x~ *ber,{x)]

g.(x) = (1—v)nx~[bei)(x)— x " bei (x}]

2ne(X) = beil(x)+ (1 —vIn®x ™[ berj(x)— x~ ber,(x)]

gnalx) = —beri(x)+ (1 —vIn®x ™ [beiy(x)— x~ 'bei,(x)].

Primes here indicate differentiation with respect to the argument of the function.

For shallow shells with sufficiently small bending-stretching stiffness ratio, the
dimensionless parameter 4 is large compared to unity. For an isotropic homogeneous shell
of constant thickness

A= 7{%.}5;*/[12(1 —v2)] (2.6)

so that A — oo as h — 0. In the present work, we are concerned particularly with shells
for which 4 > n > 1. It is known [3] that for this range of 4, the effect of terms involving
the Kelvin functions ber, and bei, and their derivatives is confined to a narrow region
adjacent to the edge of the shell; it is therefore referred to as the edge effect. Terms associated
with the constants A4, and B, are referred to as the membrane and inextensional bending
solution contributions respectively. The effect of these terms becomes dominant away from
the edge of the shell.

3. THE STRESS BOUNDARY VALUE PROBLEM
Consider a shell acted upon by edge loads and moments at p = 1 in such a way that
(N,.R,,M,) = (N,,R,, M,)cos nb, N,y = S, sinnb (3.1)
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where N, S, R, and M, are prescribed constants and n > 2. With equation (2.5), the boun-
dary conditions (3.1) assume the form

2

=1y LAY Dufdd) = =N

2

A
nin—1A,+—5—— 27

[Cofld)t D ff )] =
(32)

n*(n— 1B, + ———C,8, A+ D,g, (A} = aR,

R{,/A4)

—n(n” I)B +R(\/A)[Cngrc ’1)+ Dngm(}‘)] =

The solution of this system of four equations for the four unknowns 4,, B,, C, and D,
may be written in the form

1 n—1}
A, = m[snxl ~N,X, +~E(aR,,+nMn)X3}
(3.3)

B, =5 m ){(S +N,.)X4+~——(aRX ﬂMan):i

_a’/4)
anI

A s
[(Sﬁ N a2+ 580~ ARy + nM,a{fm(mfsdv.n]

(3.4)
a*(/A)
anl

D, = [fSn +N,)[gnlA)+ z—gn(iﬂ - &%(GRH +nM,) [ f(2) -—fu(?t)}}

where o = a/R and

i 1—v nn+1) nd
Xl = A—l{l - ,1 [M2““ i OC3+IEQ4 3
1 1 —v) n+1 n 1
Xz = —A—l{l 1 [az F a3+l{2 ]} X3 = AI, (3»5)

1 {—v 2n? n? i —1{1—v)
e O R A |

{n—l—l)(lv)(a 2n na )
- |y 2 4

with

Ay =1- (.6)

2 Ta
By = Sp/Gn O3 =TafGn, Oy = P4, (3.7)
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and, in the notation of Ref. [6],
p. = ber?(1)+ bei2(1), g, = ber (A)bei (1) — bei (Aber.(i)
r, = ber (\ber, (1) + bei (A)bei (A), = [ber,(1)}* +[bei(1))>.

From the expressions for C, and D,, we observe 1mmed1ately that there is no edge zone
contribution to the stresses and displacements of the shell if S,+ N, = aR,+nM, = 0.
If in addition, R, = M, = 0, we see from the expression for A4, and B, that the shell is in a
pure membrane state of stress. On the other hand, if we have S, = N, = O instead, then the
shell is in a state of pure inextensional bending.

In this work, we are in particular concerned with the range A > n > 1. For this range
of values of A, we obtain simpler expressions for the solution of the problem, by way of the
asymptotic expansion of the relevant Kelvin functions [6],

1
+0 (P):‘ (3.9)

e“‘”)[ (/1 n mt) (4n ——1) (/1 3n nn
(3.10)

(3.8)

ber,(A) ~

Jen|l 278 )T e
etc. Correspondingly, we have
o, 1 1 1 oy 1
— Al—-———q40|— ) ~1—= R —~1 —={.
27 Tt ,12) B~ =t N 0(12

We shall henceforth confine ourselves to homogeneous shells and introduce at this
point for convenience sake a new parameter y = /l(\/ 2) to take the place of A in all subse-
quent asymptotic considerations. In view of (2.6),

/{2

a

#= R

Y301 -v3)]. (3.11)

The following asymptotic expressions for the X;’s are obtained with the help of (3.10) when
u>n>1:

X1~1+(n—1)(1—V) (#_12) L~ 1 ("_1)(1_")+0(iz)
1 (1 1 (1 | (.12
D et - N SRR T )
p It

With these, there follows from (3.3)

n—1)(-v) |1 (=1
An = 2mn—D{[ 2 *OEFHS“‘D 2 (u

140 1) Y, 0(%” (aR,+ nM,,)}
-1 ! (n-=Ha-wl 1
_ZMWJ&P+QFE}&_NJ+~_____PfqﬁﬂﬁﬁNﬂ

2u
! [1 +0( ):I(aR,, +nM,,)}
oaa

N

2

(3.13)
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_ hy? n-D—-v) |1
B"—2n2(n2—1)\/[3(1—v2)|{l:]+ 2 +0(;§)}<S"+N")

n+1]  (n=1)(1=v) (_1__)} _n+l[ (=11 =), (1
- [14» Sl e ] el L ] )

_ hu? {[ (IH +1[ (1 ]
pETErTN e M 1 K e L e el
2— -
+(_”_“u[1+0( ):}(CIR +nM, )} (3.14)
2uaa

If only the leading terms of the expansions for the X,’s are retained in (3.13) and (3.14),
the expressions for 4, and B, become

n—1
A, = in(n—n{(s"“N"” - (aR,,+nM,,)} (3.15)
B, = by (S,+ N )+ (aR nM )} (3.16)
" 2n(n? = 1)/[3(1 —v?)] " ' '

Equations (3.15) and (3.16) coincide with results obtained by Reissner |2] by a direct
asymptotic analysis. Having (3.13) and (3.14), we now see that (3.15) and (3.16) are valid
first approximation to 4, and B, respectively, provided

+]~

<|(S,—N )+~—w-(aR +nM,) (3.17)

1
=|(Sx
i

and

al (aR,—nM,}|. (3.18)

Wt

p (S N,,)+——(aR +nM,) <

Equations (3.17) and (3.18) are, in particular, always satisfied if all but one of the prescribed
stress quantities vanish.

4. DIRECT AND BENDING STRESSES

To examine the direct and bending stresses in the shell, we consider two representative
quantities oyp, and o, 5 given by

Ne .
op = - = [o%,+0%,] cos nf
p=1

oM

G_ — r
® h? lo=1

= [6%,+ ¢%,] cos nd 4.1
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where
. nin—1)A, 1 n—1
Oppy = T = E[S“XX—NnX2+ a (aR,,+nM,,)X3J
6n( 1)B 3 1 (4.2)
. nin~1)B, oa n4
Ol = — = = wn(n+1)h2 I}S +N)X4+—-(aR X~ nM,,Xz)}
o= =] T CafalA) Dy
2 1
- % [(S,,+N,,)Zl +'H; (aR,,+nM,,)ZZ}
6 (4.3)
Ogy = W[Cngrc(/“)+ﬂngrd(i)]
1
_ b [(S,, +N,)Z, +i(aR,,+nM,,)z4J
h od
with

1{ n nn+1) n¥n+1>41—-v) n“(n—l—l)(l—v)}
= 053 - + Gt4

oy — - o -
i A2 4 3 A3

— 2 -
Zy= Lyl vaz_n(l }[( +1D)~vin—1Dos+ (13 v)[ (n+1)+vnja, (44)
A, ) i
n’(n® —1)(1 —v)?
e }
1 1—v nn+D1—v) n1—v)
Zy = K; 11— 7 o, + 2 U3 — JE og;}.

For u » n > 1, the following asymptotic expansion for the Z,'s are obtained with the
help of (3.10)

2n+1)—2 1 2n— 2
Z, ~ 1+(_n_+_)_*_‘f+0(7)’ Z, ~ 1__( n—1+ v+0(l§)
2u I 2u H
()42 : 4.5)
n+lj+2v

It is not difficult to see from (2.5) that other direct and bending stress quantities are at
most of the same order of magnitude as g4, and o,,. respectively. In what follows, we will
first study the relative importance of the interior membrane and inextensional bending
stress through the asymptotic expansion of the X;'s for u » n > 1 and indicate certain
limitations on the range of validity of the classical results obtained in [2]. We then turn
to a study of the edge zone stresses to show that beyond the range of validity of the classical
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results for the interior zone state, the dominant stresses in the shell are associated with the
edge zone state.
For 4 » n > 1 so that 4, and B, are given by (3.13) and (3.14), we have from (4.2)

@ __nin+ /(31 —v3)]

ak, 6u’

[1 +0(—13”(S,,—N,,)+(~"-:”(1 - ")[1 +o(‘)} Syt Nyt [1 +0(-1~ﬂ (aR,+nM,)
H 2u u g i

X ~ .
[1 + O(lﬂ(sn + N,,)+fl—+~1 [1 + O(%” (aR,— nM,,)+(n—:w [1 + O( : U(aR,,+ nM,)
u oa I3

2una ;_z
(4.6)
If all but one of the prescribed quantities N, S,, R, and M, vanish, then
i 2
%ol
OB H

so that the interior of the shell is in a state of inextensional bending. However, if more than
one of the prescribed quantities do not vanish, the situation needs not be equally simple. It
will be instructive to consider separately two special classes of problems, the class for which
R, = M, = 0 and the class for which S, = N, = 0.

For the first class of problems, (4.6) becomes

1 (n—-1D(1-v) 1
G nnt 1)J[3(1 =] [”O(F)](S"“N"HT[HO(BU(S”N")

Ty 6° [1 +o(£”(sn+wn)

4.7

Equation (4.7) shows that the nature of the interior stress state depends on the relative
magnitude of the two quantities (S,+ N,) and (S,— N,).

If1S,— N} = O[(n/p)lS,+ N,}], we have
Con ( n
On

wl
The interior membrane stresses are therefore small compared with the interior bending

stresses.
On the other hand, if (n/u)|S,+N,| <|S,—N,|, we have

Ton 0(”2 S,—N,

“ s o

Thn
Several possibilities arise depending on the magnitude of the ratio |S,— N |/S,+ N,|.
(1) If |S,— N} and |S,+ N,] are of the same order of magnitude which is the normal

situation, then
Opn 1
= =0l—
GBn Iu
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and the membrane stresses are again small compared with the bending stresses.
(2) If|S,+ N,| and (n/u)|S,— N,} are of the same order of magnitude, then

2-of)
OBn K

(3) If1S,+N,| and (n/u)*|S,— N,| are ‘of the same order of magnitude, then o}, /0%, =
0(1). That is, membrane and bending stresses are equally important in the interior of the
shell.

(4) Finally, if |S,+ N,| < (n/w)*S,— N,/ then ¢%,/c%, < 1, so that the interior stresses
are predominantly membrane stresses. In particular, if S, + N, = 0 (in addition to
R, = M, = 0), then there is no inextensional bending deformation contribution in the
shell interior (see equation (3.3)).

We note that as long as the interior bending stresses dominate the interior membrane
stresses, we will be interested in the leading term approximation for B, and not in that for
A,. Equation (3.18) indicates that when R, = M, = 0, the leading term approximation
(3.16) is always adequate.

From the above analysis, we see that interior membrane stresses will be significant
when [S,+N,| = O[(n/u)*|S,— N,|]. For this case, we are interested in the adequacy of the
leading term approximation (3.15) as well as (or rather than)(3.16). Equation (3.17) indicates
that when R, = M, = 0(3.15)is always adequate for the range of values of S, and N, to be
considered.

Accordingly, when R, = M, = 0, equations (3.15) and (3.16) together furnish the correct
first order approximation for the interior state for all possible combinations of S, and N,,.

Turning now to the second class of problems, for which S, = N, = 0, we have from (4.5)

Tps __ nin=1)/[3(1—v%)]

Tom 6u*

1
1+0|—
[ (M
(1) U (n/w)aR,+nM,} < |aR,—nM | which is the normal situation, the second term in
the denominator of {(4.9) can be neglected and we have

o _ofr|
Oy H
Therefore, we are interested in an accurate first approximation of B,. We see that (3.18)
does in fact provide this accurate first approximation.

(2) If, on the other hand, the exceptional case [aR,—nM,| < (n/u)laR,+nM,| is given,
then the first term in the denominator of (4.6) can be neglected and we have

Tbn _ ol”
Ton I
While we are again interested in an accurate first approximation to B,, equation (3.16)
no longer provides this approximation.

[1 + o(%ﬂ (@R, +nM,)

x
} (@R, —np,)+ = DA {1 + o( -l-ﬂ (@R, +nM,)
2p I

4.9)
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(3) For the rather special case of |aR,—nM,| and (n/u)laR,+nM,| being of the same
order of magnitude, both terms in the denominator of (4.9) are equally important. If their
sum is again of the same order of magnitude as the individual terms, the ratio o%,/c%, is
again of the order n/u. For this case, (3.16) does not lead to an accurate first approxima-
tion; it nevertheless gives the correct order of magnitude of the interior stresses. If the
same sum is such that the denominator is O[(n/u)*laR,+ nM,|], neither (3.16) nor (3.14) is
sufficient for our purpose and we will have to investigate the higher order terms in the
asymptotic expansion of B, to determine whether the interior of the shell is in a mixed stress
state of a membrane stress state.

Altogether, the above analysis shows that for the class of problems in which the contribu-
tion of S, and N, to 4, and B, are negligible, the interior of the shell is almost always in a
state of inextensional bending. The only exception occurs when

aR,—nM, + (~n—12):il~~—v~)(aR,, +nM,)
For this exception, the relevant third order terms of the asymptotic expression for B, must
be considered in order to determine whether the interior is in a mixed state or a membrane
state of stress. Comparing this with the results for the first class of problems, we see that,
while self-equilibrating tangential edge loads alone may lead to any one of the three possible
interior stress states, it takes a rather special combination of transverse load and moment
(without tangential edge loads) to induce an interior state other than an inextensional
bending state.

The general case where none of the prescribed edge loads are zero can be investigated
by a similar analysis. However, we shall confine ourselves to some remarks in connection
with the validity of (3.15) and (3.16) as first approximations for A, and B, respectively. It is
not difficult to see that they in fact lead to an accurate first approximation of the interior
stresses as long as

- o(£|aR,,+nM,,g ) (4.10)

n+1

(S, +N)+272 [{aR,,—nM,,)+u1—i v )}
o

—(aR,+nM,
2u

Therefore, insofar as the determination of the dominant interior stresses is concerned, the
restrictions (3.17) and (3.18) on the applicability of (3.15y and (3.16) as accurate first approxi-
mations can be relaxed to that given by (4.11). When {4.11) is violated, it is not difficult to
see that the interior bending stresses will be much weaker than the stresses of the more
representative cases with only one of the prescribed loads alone acting on the shell. We may
therefore take the sign of exceptionally low (but still dominant) interior bending stresses as
a warning of possible breakdown of (3.16) as an accurate first approximation to B,.

Turning now to the edge stresses, we first consider the exceptional case of S, = N, = 0
and (4.10) being satisfied, so that the classical results for the interior stresses do not apply.
For this case, we have from {4.2), (4.3), (4.5) and (4.10)

O 1 [aR,,Xl — nM,,ijl

> g{aRﬂ—{-nM,,[. @.11)

o5, 2n(n+1)| (aR,+nM,)Z,
(@R, =t + "L R, i)

P - o(g).

(aR,+nM,) {1 + 0( ::)}
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Therefore, the edge zone bending stresses are at least an order of magnitude larger than
the interior bending stresses. Moreover,

ool ) oft
Ogn u Z4 H

so that the edge bending stresses also dominate the interior direct stresses. Finally

e
Gpn

=0

Zy\

e
OBn

so that ¢%, is in fact the representative stress level developed in the shell.

It is not difficult to verify that the same conclusions also hold for the more general case
in which none of the prescribed loads is zero and together they satisfy the restriction (4.11).
We conclude therefore that for the exceptional cases for which (3.15) and (3.16) do not
represent a correct first approximation to the interior state, it is the edge zone state rather
than the interior state which is associated with the dominant stress of the problem.

On the other hand, it can be shown by similar considerations that in all cases for which
the classical results are a valid first approximation of the interior state, the edge zone con-
tribution is at most of the same order of magnitude as the interior stresses.

5. THE DISPLACEMENT BOUNDARY VALUE PROBLEM

We consider now a shell subject to edge deformations at p = 1 so that
(u, w, B,) = (u,,w,, B,) cos no, v = p,sin nf (5.1)

where u and v are meridional and circumferential displacement components, f, = —w, is

the meridional rotation, u,, v,, w, and 8, are prescribed constants and n = 2. To solve this

displacement boundary value problem, we need explicit expressions for u, v and B,.
Differentiating equation (2.3), we get

B, .. A : .
B, = —{ D:,;Z ) p"t +W[C,,ber,,(ip)+ Dnbel,,(/lp)]} cos nfl (5.2)

In order to obtain u and v, we use the strain displacement relations

w vetu w
Upmgp = A(N,—vNy), - R™ A(Ng—vN,)
", . (5.3)
*’-H(—) = 2(14v)AN,,
r rl,
It follows from (5.3), (2.5) and (2.3) in a manner described in [3] that
a’B
u= { —na(l1+v)AA,p" '+ p"*!
RD(n+1)(1—
(n+1)(1—v) (54)

+W[C"bei;(ip)— D,.ber;.(ip)]}cos no
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a’B,
RD(n+1)(1—v)

nt i

P

= {na(l +V)AA P+

M( (5.4 cont’d))

[C, bei{ip)— D,,E}ern(ip)]}sin ng.

With (2.3), (5.2) and (5.4), the boundary conditions (5.1) assume the form

a?
B,
D(i—v) \/D{C Wber(A}+ D bei (1) =
na’l B
) \/ D[C ber,(A}+ D,bei (A} = —af,
a*B n(1 +v)(y/ 4) (5.3)
1 z - [(A)— ) =1
na(l +v)AA,+ RDGi - D)(1 =) [C bei )= D ber (A)] = v,
a’B, (1+ AU/ A) . ,
—na(l +v)AA,,+RD(n+ (i —v) [C bei(A)— D, ber,(1)] =
The solution for the interior state coefficients 4, and B, may be written in the form
1
= —m! — — 1
An 2naA(1+v)lunY1 UnYZ 2a(1+v)lwny3+aﬁnY4Jf
Din+1)(1 G0
B, = i’lt_)(—f( +0,)Ys = 20(1+ v)[w, Y+ aB, ¥,]}
20a®
where
1 n(n+l)(1+v)( n )} 1 { (n+1)(1+v)( n )}
Y, = Az{1+ E %3 /1“4 , Y, = A, 1 — oy — -ioc
1 n o nAn+1)(1+v) 1 n nn+ DA+ }
Y3 E{ +1a3“*“‘“—/13——‘“” s Y4 —ZLZ—A; a3+1a4 WT"“ (57)
1 1 n 1 n
Y5 == Z—Z, Yé = ﬂ—&;(otz—zog)q Y‘y == m ()‘.3"“1&4
with
(n+ D1 +v) 2n n?
Az = 1——-—2—/1—“ (a2—7a3+—}-2a4 (58)

and where a and «;’s are as defined previously. The solution for the edge zone state coeffi-
cients C, and D, may be written in the form

_ (/D) /()" bei
C,' - —W<(un+vn)[beln(l) /lbeln()“)J

2aw, [, . nr+DA+V | on
- [bet,.(k) e {ber,,(x) —Eber,,(i)ﬂ (5.9)

20apf, (n+1){1+v) , n
7 ( ) [b SA)+ ——»-——2 i {bern(i)—zber"(l)H>
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- iiwl [ber;(l) - L"tzll)ﬁ_lﬂ) {bei;(l) —%bei,,(l)ﬂ (5.9 cont’d.)

- 2uaf, _mm{ e }]>
z(n+1)[b‘”"(’“ > beil(7) Abeln(,{) _

For u > n > 1, we have, with the help of (3.10), the following asymptotic expressions
for the quantities Y,’s:

+(n+ (1 +v)+0( 1

2u P)’ L~ 1-

Y, ~ 1 (u+1)(1+v)+0( 1 )

2u u?

U

Y, ~i{1+—~[ -1 +(n+1)(1+v)]+0(1 )}

2p
1 1
Y, ~ W{1+2—#[(2n— D+ @n+ 1 +v)]+O(P)} (5.10)
(n+1)(1+v) 1 1 vin+1) 1
o 1 ol ). R R wof ol

1 1 1
Y~ G {1 gl —ln+ 1)(1+v)]+0(l7)}.

Correspondingly, we have as asymptotic expressions for 4, and B,:

B 1 _(m+1)(1+v) (i 3 (n+D(A+v) [1
A"‘2naA(1+V){[1 2 +0u2]v" [H 2u +0(u2”u"

2oc(l+v) (n—l) (n+1)(1+v)+0( 1 H
2u 2u

2oc(1+v)aﬁ [ (2n—1) HnH)(HV)*O(P):l}

B,,=£—_M+— [ n+1(1+v)+0(%)i|(u,,+v,,)

1)
2a(1+v)w, [1 +v(n-+- 1)

2

(5.11)

o]

2u 2u [
2a(1 nHa —(2n+1 1
2 +v2)aB,, [1 L+ (1 4v)— 20+ )+o(_2”}.
(2w 2u U
If all but one of prescribed edge displacements vanish, we get from (5.11) and (5.12)
O _ 6B, n2)

so that the interior of the shell is in a membrane stress state.
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If terms of the order n/u are discarded in the Y;’s and contribution for the w, and §,
terms are negligible, (5.11) and (5.12) are further reduced to

v, — U, B _D(1—v)(n+1)

A, = ntn _ i
"~ 2na(l +v)4 " e UL (5.14, 15)

respectively. Equations (5.14) and (5.15) are exactly those obtained by a direct asymptotic
analysis of the displacement boundary problem assuming that both w, and af, are O(aU)
where U is the larger (in magnitude) of v, and u, [3]. Having (5.11) and (5.12), we now see
that this restriction on the magnitude of w, and g, would lead to (5.14) and (5.15) provided
that (u,+v,) and (u,—v,) are of the same order of magnitude. However, even if |u,+v,] <
|u, —v,|, the results of [3] remain valid in that (5.14) continues to give the correct dominant
stresses in the shell. On the other hand, if Ju,—v,| = O[(n/u)(u,+v,)], in which case the
contribution from w, and f, is in fact negligible, it is not difficult to see from (5.11) that
(5.14) would not give an accurate first approximation to A,. But at the same time, it is also
not difficult to see that the dominant interior (membrane) stresses are at least an order of
magnitude weaker than for the typical cases. Direct calculations of the edge zone stresses
show again that for this exceptional case for which (5.14) and (5.15) do not represent an
accurate first approximation for the interior stress state, it is the edge zone state rather than
the interior state which is associated with dominant stresses of the problem.,
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Résumé—Les solutions exactes du probléme de contrainte et de déplacement de limite pour une enveloppe élastique
sphérique peu profonde d’épaisscur constante, sujette a des chargements de bord s’équilibrant tout seuls, sont
obtenues. Le comportement asymptotique de ces solutions exactes trace la dépendance de I’état de contrainte de
I'intérieur et de la zone de bord sur les charges appliquées. Des relations entre ces résultats et les résultats précedem-
ment obtenus par une analyse directe asymptotique de ces problémes de valeur de limite sont établies.

Zusammenfassung—Genaue Lisungen werden erhalten fiir das Verschiebungs und Spannungs Grenzproblem
einer flachen elastischen kugelférmigen Schale gleichmissiger Dicke, die ausgewogenen Randbelastungen
unterliegt. Das asymptotische Verhalten dieser genauen Losungen gibt die Abhingigkeit der inneren und
Grenzzonen Spannungszustinde von der Belastung. Beziehungen zwischen diesen Resultaten und denen die
durch direkte asymptotische Analyse der Gernzwertprobleme erhalten wurden werden bestimmt.

AbcTpakT—IlosyyeHnl TOUHbIE pelieHus NPoOIeMbl HANPKEHHUA U CMEILEHMS TPAHUYHOTO 3HAYEHUsT AN
MeNKOH chepHUYeCKOi TOHKOM 3MacTHYHOM 0G0I04KH NOCTORHHON TOMLUMHBI IIPH YC/IOBHU HArpy30K camo-
YPaBHOBEIIMBAIOUIETO Kpasi. ACHMITOTHYECKOE NIOBEIEHHE 3THX TOYHBIX DEIICHUH YyCTaHABIMBAET 3aBUCH~
MOCTB COCTOSIHUSI HATIPSOKEHHS BHYTPEHHEH M KpaeBOH 30HBI OT NPHMEHAEMBIX HArpy30K. YCTaHOBIIEHBI
OTHOWIEHHS! MEXAY ITUMH M MPEAblAyLIMMH Pe3y/IbTaTaMH, IOJYYCHHBIMH NMPAMBIM aCHMITOTHYECKHM
aHaTU30M 3THX NPOGJIeM TPaHHYHBIX 3HAYECHMH.



